Difference between revisions of "Neural Fields for Scalable Scene Reconstruction"

From Design Computation
Jump to: navigation, search
(Presentation)
Line 5: Line 5:
 
[[Category:Conferences]]
 
[[Category:Conferences]]
 
[[Category:Book]]
 
[[Category:Book]]
[[DC I/O 2022]] Keynote by [https://jamestompkin.com// JAMES TOMPKIN]. https://doi.org/10.47330/DCIO.2022.AXBL8798
+
[[DC I/O 2022]] Keynote by [https://jamestompkin.com// James Tompkin]. https://doi.org/10.47330/DCIO.2022.AXBL8798
  
  

Revision as of 19:19, 15 March 2023

DCIO2022-Logo.png
DC I/O 2022 Keynote by James Tompkin. https://doi.org/10.47330/DCIO.2022.AXBL8798


DCIO2022 S1 1 J-Tompkin.png


Abstract

Neural fields are a new (and old!) approach to solving problems over spacetime via first-order optimization of a neural network. Over the past three years, combining neural fields with classic computer graphics approaches have allowed us to make significant advances in solving computer vision problems like scene reconstruction. I will present recent work that can reconstruct indoor scenes for photorealistic interactive exploration using new scalable hybrid neural field representations. This has applications where any real-world place needs to be digitized, especially for visualization purposes.

Presentation

Left Video Recording.

Conference Slides

Left Conference Slides.

Keywords

AI, Architect

Reference

DOI: https://doi.org/10.47330/DCIO.2022.AXBL8798

Bibliography

  • Anderson, T.T., 2011. Complicating Heidegger and the Truth of Architecture. The Journal of Aesthetics and Art Criticism 69, 69–79.