Difference between revisions of "Exposing Genetic Algorithms: A Tool for Designers to Curate Bespoke Genetic Algorithms for Generative Design Methodologies"

From Design Computation
Jump to: navigation, search
(Conference Paper)
(Bibliography)
 
Line 25: Line 25:
  
 
=Bibliography=
 
=Bibliography=
PENDING
+
*ADAMS, J.U., SHAW, K.M., 2008. Atavism: Embryology, Development and Evolution. Nat. Educ. 1, 131.
 +
*BACK, T., 1994. Selective pressure in evolutionary algorithms: a characterization of selection mechanisms, in: Proceedings of the First IEEE Conference on Evolutionary Computation. IEEE World Congress on Computational Intelligence. Presented at the Proceedings of the First IEEE Conference on Evolutionary Computation. IEEE World Congress on Computational Intelligence, pp. 57–62 vol.1. https://doi.org/10.1109/ICEC.1994.350042
 +
*BAKER, B., KANITSCHEIDER, I., MARKOV, T., WU, Y., POWELL, G., MCGREW, B., MORDATCH, I., 2020. Emergent Tool Use From Multi-Agent Autocurricula. ArXiv190907528 Cs Stat.
 +
*BISHOP, C.M., 2006. Pattern recognition and machine learning, Information science and statistics. Springer, New York.
 +
*BROCK, A., DONAHUE, J., SIMONYAN, K., 2019. Large Scale GAN Training for High Fidelity Natural Image Synthesis. ArXiv180911096 Cs Stat.
 +
*DAISY DUNNE, 2020. Global warming has ‘changed’ spread of tropical cyclones around the world [WWW Document]. Carbon Brief. URL https://www.carbonbrief.org/global-warming-has-changed-spread-of-tropical-cyclones-around-the-world (accessed 3.9.21).
 +
*DAISY GILL, 2020. “Sponge Cities” Could Be The Answer to China’s Impending Water Crisis [WWW Document]. EarthOrg - Past Present Future. URL https://earth.org/sponge-cities-could-be-the-answer-to-impending-water-crisis-in-china/ (accessed 3.9.21).
 +
*DUTRA, A.S., 2020. Heterozygous [WWW Document]. Genome.gov. URL https://www.genome.gov/genetics-glossary/heterozygous (accessed 4.28.21).
 +
*EDOGAWA CITY OFFICE, 2019. Edogawa-ku Flood Damage Hazard Map [WWW Document]. Edogawa-Ku. URL https://www.city.edogawa.tokyo.jp/e007/bosaianzen/bosai/kanrenmap/n_hazardmap.html (accessed 3.9.21).
 +
*FRANCIS S. COLLINS, 2020. Mutation [WWW Document]. Genome.gov. URL https://www.genome.gov/genetics-glossary/Mutation (accessed 4.21.21).
 +
*FRAZER, J., 1995. An Evolutionary Architecture. Architectural Association.
 +
*GRUBER, T.R., RUSSELL, D.M., 2020. Generative Design Rationale: Beyond the Record and Replay Paradigm, in: Moran, T.P., Carroll, J.M. (Eds.), Design Rationale. CRC Press, pp. 323–349. https://doi.org/10.1201/9781003064053-14
 +
*HINTON-HARD, H. 2021. Decay and deployment: automated manufacturing of natural rubber in building skins, MArch thesis, University College London, London
 +
*HOLLAND, J.H., HOLLAND, P. OF P. AND OF E.E. AND C.S.J.H., HOLLAND, S.L. IN H.R.M., 1992. Adaptation in natural and artificial systems: an introductory analysis with applications to biology, control, and artificial intelligence. MIT Press.
 +
*HORNBY, G., GLOBUS, A., LINDEN, D., LOHN, J., 2006. Automated Antenna Design with Evolutionary Algorithms, in: Space 2006. Presented at the Space 2006, American Institute of Aeronautics and Astronautics, San Jose, California. https://doi.org/10.2514/6.2006-7242
 +
*JOAN E. BAILEY-WILSON, 2020. Crossing Over [WWW Document]. Genome.gov. URL https://www.genome.gov/genetics-glossary/Crossing-Over (accessed 4.21.21).
 +
*KATOCH, S., CHAUHAN, S.S., KUMAR, V., 2020. A review on genetic algorithm: past, present, and future. Multimed. Tools Appl. 80, 8091–8126. https://doi.org/10.1007/s11042-020-10139-6
 +
*KOENIG, R., MIAO, Y., AICHINGER, A., KNECHT, K., KONIEVA, K., 2020. Integrating urban analysis, generative design, and evolutionary optimization for solving urban design problems. Environ. Plan. B Urban Anal. City Sci. 47, 997–1013. https://doi.org/10.1177/2399808319894986
 +
*KOSTER, M., 2020. Neural Video Style Transfer Leveraging PDG | Manuel Koster | Houdini Hive Worldwide.
 +
*KRISHNAN, S., LIN, J., SIMANJUNTAK, J., HOOIMEIJER, F., BRICKER, J., DANIEL, M., YOSHIDA, Y., 2019. Interdisciplinary Design of Vital Infrastructure to Reduce Flood Risk in Tokyo’s Edogawa Ward. Geosciences 9, 357. https://doi.org/10.3390/geosciences9080357
 +
*LAIT, J., 2015. Multithreading in Visual Effects 94.
 +
*MCCORMACK, J.P., DORIN, A., INNOCENT, T.C., 2005. Generative design: a paradigm for design research, in: Futureground. Presented at the Design Research Society (UK) International Conference 2004: Futureground, Monash University, pp. 0–0.
 +
*MITCHELL, M., 1998. An introduction to genetic algorithms. MIT press.
 +
*MITCHELL, M., TAYLOR, C.E., 1999. Evolutionary Computation: An Overview. Annu. Rev. Ecol. Syst. 30, 593–616.
 +
*MONCRIEF, J., 2019. Intro to Procedural Modeling: Not Just Another Rock Generator | John Moncrief | GDC 2019.
 +
*NAGY, D., VILLAGGI, L., BENJAMIN, D., 2018. Generative Urban Design: Integrating Financial and Energy Goals for Automated Neighborhood Layout. p. 25. https://doi.org/10.22360/simaud.2018.simaud.025
 +
*NAGY, D., VILLAGGI, L., ZHAO, D., BENJAMIN, D., 2017. A Novel Design Space Model for Generative Space Planning in Architecture 10.
 +
*PARISH, Y.I.H., MÜLLER, P., 2001. Procedural modeling of cities, in: Proceedings of the 28th Annual Conference on Computer Graphics and Interactive Techniques, SIGGRAPH ’01. Association for Computing Machinery, New York, NY, USA, pp. 301–308. https://doi.org/10.1145/383259.383292
 +
*PAWLYN, M., 2019. Biomimicry in Architecture. Routledge.
 +
*RUTTEN, D., 2014. Navigating multi-dimensional landscapes in foggy weather as an analogy for generic problem solving. 16TH Int. Conf. Geom. Graph. 14.
 +
*RUTTEN, D., 2010. Galapagos [WWW Document]. URL https://www.grasshopper3d.com/groups/group/show?groupUrl=galapagos (accessed 4.28.21).
 +
*SEGRE, J.A., 2020. Telomere [WWW Document]. Genome.gov. URL https://www.genome.gov/genetics-glossary/Telomere (accessed 4.28.21).
 +
*SHAPIRO, J., 2001. Genetic Algorithms in Machine Learning 23.
 +
*SIMS, K., 1994. Evolving virtual creatures, in: Proceedings of the 21st Annual Conference on Computer Graphics and Interactive Techniques  - SIGGRAPH ’94. Presented at the the 21st annual conference, ACM Press, Not Known, pp. 15–22. https://doi.org/10.1145/192161.192167
 +
*SÖRENSEN, K., SEVAUX, M., GLOVER, F., 2018. A History of Metaheuristics, in: Martí, R., Pardalos, P.M., Resende, M.G.C. (Eds.), Handbook of Heuristics. Springer International Publishing, Cham, pp. 791–808. https://doi.org/10.1007/978-3-319-07124-4_4
 +
*STEVE SUNDBERG, 2016. Arakawa River Floodgate, Tokyo, c. 1940. | Old Tokyo Old Tokyo. URL https://www.oldtokyo.com/arakawa-river-floodgate-tokyo-c-1940/ (accessed 3.9.21).
 +
*TASH REITH-BANKS, 2019. A city built on water: the hidden rivers under Tokyo’s concrete and neon [WWW Document]. the Guardian. URL http://www.theguardian.com/cities/2019/jun/13/a-city-built-on-water-the-hidden-rivers-under-tokyos-concrete-and-neon (accessed 3.9.21).
 +
*TURING, A.M., 1950. I.—COMPUTING MACHINERY AND INTELLIGENCE. Mind LIX, 433–460. https://doi.org/10.1093/mind/LIX.236.433
 +
*WEISSTEIN, E.W., 2020. Delaunay Triangulation [WWW Document]. URL https://mathworld.wolfram.com/DelaunayTriangulation.html (accessed 3.31.21).
 +
*XU, X., YIN, C., WANG, W., XU, N., HONG, T., LI, Q., 2019. Revealing Urban Morphology and Outdoor Comfort through Genetic Algorithm-Driven Urban Block Design in Dry and Hot Regions of China. Sustainability 11, 3683. https://doi.org/10.3390/su11133683
 +
*YUSOFF, Y., NGADIMAN, M.S., ZAIN, A.M., 2011. Overview of NSGA-II for Optimizing Machining Process Parameters. Procedia Eng., CEIS 2011 15, 3978–3983. https://doi.org/10.1016/j.proeng.2011.08.745
 +
*ZITZLER, E., THIELE, L., 1999. Multiobjective evolutionary algorithms: a comparative case study and the strength Pareto approach. IEEE Trans. Evol. Comput. 3, 257–271. https://doi.org/10.1109/4235.797969

Latest revision as of 17:33, 13 June 2022

DCIO2021-Logo.png
DC I/O 2021 Paper by TONY LE.
DCIO2021 T-Lee.png

Abstract

Genetic Algorithms, or GAs, are search methods inspired by the process of natural selection. This paper investigates how designers can take control over the curation of a genetic algorithm for their generative design methodologies, through the development of a GA design tool that has been tested on three study models. Within the discipline of architecture, generative processes with GAs are commonly used to either exploit, by optimizing towards a design criteria, or explore, by finding novel design solutions. However, the generative process can be limited by the design algorithm, especially if they were formulated externally from the design project or industry. Therefore, the algorithms designed by computer scientists are often generic and aim solely for optimal efficiency. So, the paper explores if further control over the algorithm can improve the designer’s ability to explore, as well as exploit, their design solution space. This can be accomplished through the development of a GA tool that exposes the algorithmic framework, allowing users to manipulate and reconfigure the processes for their own objectives. Ultimately allowing designers to develop bespoke GAs tailored to their own design projects.

Presentation

Left Video Recording.

Conference Paper

Left Conference Paper.

Keywords

Genetic Algorithms, Evolutionary Computation, Multi-Objective Optimization, Generative Design

Reference

DOI: https://doi.org/10.47330/DCIO.2021.JGRN4011

Bibliography

  • ADAMS, J.U., SHAW, K.M., 2008. Atavism: Embryology, Development and Evolution. Nat. Educ. 1, 131.
  • BACK, T., 1994. Selective pressure in evolutionary algorithms: a characterization of selection mechanisms, in: Proceedings of the First IEEE Conference on Evolutionary Computation. IEEE World Congress on Computational Intelligence. Presented at the Proceedings of the First IEEE Conference on Evolutionary Computation. IEEE World Congress on Computational Intelligence, pp. 57–62 vol.1. https://doi.org/10.1109/ICEC.1994.350042
  • BAKER, B., KANITSCHEIDER, I., MARKOV, T., WU, Y., POWELL, G., MCGREW, B., MORDATCH, I., 2020. Emergent Tool Use From Multi-Agent Autocurricula. ArXiv190907528 Cs Stat.
  • BISHOP, C.M., 2006. Pattern recognition and machine learning, Information science and statistics. Springer, New York.
  • BROCK, A., DONAHUE, J., SIMONYAN, K., 2019. Large Scale GAN Training for High Fidelity Natural Image Synthesis. ArXiv180911096 Cs Stat.
  • DAISY DUNNE, 2020. Global warming has ‘changed’ spread of tropical cyclones around the world [WWW Document]. Carbon Brief. URL https://www.carbonbrief.org/global-warming-has-changed-spread-of-tropical-cyclones-around-the-world (accessed 3.9.21).
  • DAISY GILL, 2020. “Sponge Cities” Could Be The Answer to China’s Impending Water Crisis [WWW Document]. EarthOrg - Past Present Future. URL https://earth.org/sponge-cities-could-be-the-answer-to-impending-water-crisis-in-china/ (accessed 3.9.21).
  • DUTRA, A.S., 2020. Heterozygous [WWW Document]. Genome.gov. URL https://www.genome.gov/genetics-glossary/heterozygous (accessed 4.28.21).
  • EDOGAWA CITY OFFICE, 2019. Edogawa-ku Flood Damage Hazard Map [WWW Document]. Edogawa-Ku. URL https://www.city.edogawa.tokyo.jp/e007/bosaianzen/bosai/kanrenmap/n_hazardmap.html (accessed 3.9.21).
  • FRANCIS S. COLLINS, 2020. Mutation [WWW Document]. Genome.gov. URL https://www.genome.gov/genetics-glossary/Mutation (accessed 4.21.21).
  • FRAZER, J., 1995. An Evolutionary Architecture. Architectural Association.
  • GRUBER, T.R., RUSSELL, D.M., 2020. Generative Design Rationale: Beyond the Record and Replay Paradigm, in: Moran, T.P., Carroll, J.M. (Eds.), Design Rationale. CRC Press, pp. 323–349. https://doi.org/10.1201/9781003064053-14
  • HINTON-HARD, H. 2021. Decay and deployment: automated manufacturing of natural rubber in building skins, MArch thesis, University College London, London
  • HOLLAND, J.H., HOLLAND, P. OF P. AND OF E.E. AND C.S.J.H., HOLLAND, S.L. IN H.R.M., 1992. Adaptation in natural and artificial systems: an introductory analysis with applications to biology, control, and artificial intelligence. MIT Press.
  • HORNBY, G., GLOBUS, A., LINDEN, D., LOHN, J., 2006. Automated Antenna Design with Evolutionary Algorithms, in: Space 2006. Presented at the Space 2006, American Institute of Aeronautics and Astronautics, San Jose, California. https://doi.org/10.2514/6.2006-7242
  • JOAN E. BAILEY-WILSON, 2020. Crossing Over [WWW Document]. Genome.gov. URL https://www.genome.gov/genetics-glossary/Crossing-Over (accessed 4.21.21).
  • KATOCH, S., CHAUHAN, S.S., KUMAR, V., 2020. A review on genetic algorithm: past, present, and future. Multimed. Tools Appl. 80, 8091–8126. https://doi.org/10.1007/s11042-020-10139-6
  • KOENIG, R., MIAO, Y., AICHINGER, A., KNECHT, K., KONIEVA, K., 2020. Integrating urban analysis, generative design, and evolutionary optimization for solving urban design problems. Environ. Plan. B Urban Anal. City Sci. 47, 997–1013. https://doi.org/10.1177/2399808319894986
  • KOSTER, M., 2020. Neural Video Style Transfer Leveraging PDG | Manuel Koster | Houdini Hive Worldwide.
  • KRISHNAN, S., LIN, J., SIMANJUNTAK, J., HOOIMEIJER, F., BRICKER, J., DANIEL, M., YOSHIDA, Y., 2019. Interdisciplinary Design of Vital Infrastructure to Reduce Flood Risk in Tokyo’s Edogawa Ward. Geosciences 9, 357. https://doi.org/10.3390/geosciences9080357
  • LAIT, J., 2015. Multithreading in Visual Effects 94.
  • MCCORMACK, J.P., DORIN, A., INNOCENT, T.C., 2005. Generative design: a paradigm for design research, in: Futureground. Presented at the Design Research Society (UK) International Conference 2004: Futureground, Monash University, pp. 0–0.
  • MITCHELL, M., 1998. An introduction to genetic algorithms. MIT press.
  • MITCHELL, M., TAYLOR, C.E., 1999. Evolutionary Computation: An Overview. Annu. Rev. Ecol. Syst. 30, 593–616.
  • MONCRIEF, J., 2019. Intro to Procedural Modeling: Not Just Another Rock Generator | John Moncrief | GDC 2019.
  • NAGY, D., VILLAGGI, L., BENJAMIN, D., 2018. Generative Urban Design: Integrating Financial and Energy Goals for Automated Neighborhood Layout. p. 25. https://doi.org/10.22360/simaud.2018.simaud.025
  • NAGY, D., VILLAGGI, L., ZHAO, D., BENJAMIN, D., 2017. A Novel Design Space Model for Generative Space Planning in Architecture 10.
  • PARISH, Y.I.H., MÜLLER, P., 2001. Procedural modeling of cities, in: Proceedings of the 28th Annual Conference on Computer Graphics and Interactive Techniques, SIGGRAPH ’01. Association for Computing Machinery, New York, NY, USA, pp. 301–308. https://doi.org/10.1145/383259.383292
  • PAWLYN, M., 2019. Biomimicry in Architecture. Routledge.
  • RUTTEN, D., 2014. Navigating multi-dimensional landscapes in foggy weather as an analogy for generic problem solving. 16TH Int. Conf. Geom. Graph. 14.
  • RUTTEN, D., 2010. Galapagos [WWW Document]. URL https://www.grasshopper3d.com/groups/group/show?groupUrl=galapagos (accessed 4.28.21).
  • SEGRE, J.A., 2020. Telomere [WWW Document]. Genome.gov. URL https://www.genome.gov/genetics-glossary/Telomere (accessed 4.28.21).
  • SHAPIRO, J., 2001. Genetic Algorithms in Machine Learning 23.
  • SIMS, K., 1994. Evolving virtual creatures, in: Proceedings of the 21st Annual Conference on Computer Graphics and Interactive Techniques - SIGGRAPH ’94. Presented at the the 21st annual conference, ACM Press, Not Known, pp. 15–22. https://doi.org/10.1145/192161.192167
  • SÖRENSEN, K., SEVAUX, M., GLOVER, F., 2018. A History of Metaheuristics, in: Martí, R., Pardalos, P.M., Resende, M.G.C. (Eds.), Handbook of Heuristics. Springer International Publishing, Cham, pp. 791–808. https://doi.org/10.1007/978-3-319-07124-4_4
  • STEVE SUNDBERG, 2016. Arakawa River Floodgate, Tokyo, c. 1940. | Old Tokyo Old Tokyo. URL https://www.oldtokyo.com/arakawa-river-floodgate-tokyo-c-1940/ (accessed 3.9.21).
  • TASH REITH-BANKS, 2019. A city built on water: the hidden rivers under Tokyo’s concrete and neon [WWW Document]. the Guardian. URL http://www.theguardian.com/cities/2019/jun/13/a-city-built-on-water-the-hidden-rivers-under-tokyos-concrete-and-neon (accessed 3.9.21).
  • TURING, A.M., 1950. I.—COMPUTING MACHINERY AND INTELLIGENCE. Mind LIX, 433–460. https://doi.org/10.1093/mind/LIX.236.433
  • WEISSTEIN, E.W., 2020. Delaunay Triangulation [WWW Document]. URL https://mathworld.wolfram.com/DelaunayTriangulation.html (accessed 3.31.21).
  • XU, X., YIN, C., WANG, W., XU, N., HONG, T., LI, Q., 2019. Revealing Urban Morphology and Outdoor Comfort through Genetic Algorithm-Driven Urban Block Design in Dry and Hot Regions of China. Sustainability 11, 3683. https://doi.org/10.3390/su11133683
  • YUSOFF, Y., NGADIMAN, M.S., ZAIN, A.M., 2011. Overview of NSGA-II for Optimizing Machining Process Parameters. Procedia Eng., CEIS 2011 15, 3978–3983. https://doi.org/10.1016/j.proeng.2011.08.745
  • ZITZLER, E., THIELE, L., 1999. Multiobjective evolutionary algorithms: a comparative case study and the strength Pareto approach. IEEE Trans. Evol. Comput. 3, 257–271. https://doi.org/10.1109/4235.797969