Difference between revisions of "Electroactive Polymers"
Abel Maciel (talk | contribs) (→Cross-References) |
Abel Maciel (talk | contribs) |
||
Line 1: | Line 1: | ||
[[Category:Smart Materials]] | [[Category:Smart Materials]] | ||
[[Category:Electrical engineering]] | [[Category:Electrical engineering]] | ||
+ | [[Category:Robotics]] | ||
+ | [[Category:Automation]] | ||
Electroactive polymers, or [[EAP]]s, are [[polymers]] that exhibit a change in size or shape when stimulated by an electric field. The most common applications of this type of material are in actuators[1] and sensors. A typical characteristic property of an EAP is that they will undergo a large amount of deformation while sustaining large forces. | Electroactive polymers, or [[EAP]]s, are [[polymers]] that exhibit a change in size or shape when stimulated by an electric field. The most common applications of this type of material are in actuators[1] and sensors. A typical characteristic property of an EAP is that they will undergo a large amount of deformation while sustaining large forces. |
Latest revision as of 22:12, 2 September 2016
Electroactive polymers, or EAPs, are polymers that exhibit a change in size or shape when stimulated by an electric field. The most common applications of this type of material are in actuators[1] and sensors. A typical characteristic property of an EAP is that they will undergo a large amount of deformation while sustaining large forces.
The majority of historic actuators are made of ceramic piezoelectric materials. While these materials are able to withstand large forces, they commonly will only deform a fraction of a percent. In the late 1990s, it has been demonstrated that some EAPs can exhibit up to a 380% strain, which is much more than any ceramic actuator. One of the most common applications for EAPs is in the field of robotics in the development of artificial muscles; thus, an electroactive polymer is often referred to as an artificial muscle.
Synonyms
Application
Cross-References
Recommended Reading
- "Bar-Cohen, Yoseph: "Artificial Muscles using Electroactive Polymers (EAP): Capabilities, Challenges and Potential" (PDF).
- Wang, T.; Farajollahi, M.; Choi, Y.S.; Lin, I.T.; Marshall, J.E.; Thompson, N.M.; Kar-Narayan, S.; Madden, J.D.W.; Smoukov, S.K. (2016). "Electroactive polymers for sensing". 6 (4): 1–19. doi:10.1098/rsfs.2016.0026.
- Keplinger, Christoph; Kaltenbrunner, Martin; Arnold, Nikita; Bauer, Siegfried (2010-03-09).
- "Röntgen's electrode-free elastomer actuators without electromechanical pull-in instability". Proceedings of the National Academy of Sciences. 107 (10): 4505–4510. doi:10.1073/pnas.0913461107. ISSN 0027-8424. PMC 2825178free to read. PMID 20173097.
- "Electrochemistry Encyclopedia: Electroactive Polymers (EAP)".
- Finkenstadt,Victoria L. (2005). "Natural polysaccharides as electroactive polymers.". Appl Microbiol Biotechnol. 67 (6): 735–745. doi:10.1007/s00253-005-1931-4. PMID 15724215.
- Ali Eftekhari (2010). "Comment on "A Linear Actuation of Polymeric Nanofibrous Bundle for Artificial Muscles"". Chemistry of Materials. 22 (8): 2689. doi:10.1021/cm903343t.
- Feldman, Randy (2008-02-20). "Electroactive Polymer Artificial Muscle - A Polymer Based Generator?" (PDF). Thin Film Users Group. Northern California Chapter of the American Vacuum Society. Retrieved 2012-07-16.
- "Electroactive Polymer "Artificial Muscle"". SRI International. Retrieved 2012-07-16.
- "Ferroelectric Properties of Vinylidene Fluoride Copolymers," by T. Furukawa, in Phase Transitions, Vol. 18, pp. 143-211 (1989).
- Nalwa, H. (1995). Ferroelectric Polymers (First ed.). New York: Marcel Dekker, INC. ISBN 0-8247-9468-0.
- Lovinger, A.J. (1983). "Ferroelectric polymers.". Science. 220 (4602): 1115–1121. doi:10.1126/science.220.4602.1115. PMID 17818472.
- Wang, Youqi; Changjie Sun; Eric Zhou; Ji Su (2004). "Deformation Mechanisms of Electrostrictive Graft Elastomers". Smart Materials and Structures. Institute of Physics Publishing. 13: 1407–1413. doi:10.1088/0964-1726/13/6/011. ISSN 0964-1726.
- Ishige, Ryohei; Masatoshi Tokita; Yu Naito; Chun Ying Zhang; Junji Watanabe (January 22, 2008). "Unusual Formation of Smectic A Structure in Cross-Linked Monodomain Elastomer of Main-Chain LC Polyester with 3-Methylpentane Spacer".
- Macromolecules. American Chemical Society. 41 (7): 2671–2676. doi:10.1021/ma702686c.
- Qu, L.; Peng, Q.; Dai, L.; Spinks, G.M.; Wallace, G.G.; Baughman, R.H. (2008). "Carbon Nanotube Electroactive Polymer Materials: Opportunities and Challenges". MRS Bulletin. 33 (03): 215–224. doi:10.1557/mrs2008.47.ISSN 0883-7694
- Fully Plastic Actuator through Layer-by-Layer Casting with Ionic-Liquid-Based Bucky Gel Takanori Fukushima, Kinji Asaka, Atsuko Kosaka, Takuzo Aida p. Angewandte Chemie International Edition Volume 44, Issue 16 2410 2005
- Glass, J. Edward; Schulz, Donald N.; Zukosi, C.F (May 13, 1991). "1". Polymers as Rheology Modifiers. ACS Symposium Series. 462. Americal Chemical Society. pp. 2–17. ISBN 9780841220096.
- Nemat-Nasser, S.; Thomas, C. (2001). "6". In Yoseph Bar-Cohen. Electroactive Polymer (EAP) Actuators as Articifial Muscles-Reality, Potential and Challenges. SPIE Press. pp. 139–191.
- Shahinpoor, M.; Y. Bar-Cohen; T. Xue; J.O. Simpson; J. Smith (5 March 1996). "Ionic Polymer-Metal Composties (IPMC) As Biomimetic Sensors and Actuators" (PDF). SPIE. p. 17. Retrieved 6 April 2010.
- Park, I.S.; Jung, K.; Kim, D.; Kim, S.M; Kim, K.J. (2008). "Physical Principles of Ionic Polymer–Metal Composites as Electroactive Actuators and Sensors". MRS Bulletin. 33 (03): 190–195. doi:10.1557/mrs2008.44.ISSN 0883-7694
- Gerlach, G.; Arndt, K.-F. (2009). Hydrogel Sensors and Actuators (First ed.). Berlin: Springer. ISBN 978-3-540-75644-6.
- Bar-Cohen, Yoseph; Kwang J Kim; Hyouk Ryeol Choi; John D W Madden (2007). "Electroactive Polymer Materials". Smart Materials and Structures. Institute of Physics Publishing. 16 (2). doi:10.1088/0964-1726/16/2/E01.
- Cowie, J.M.G.; Valerai Arrighi (2008). "13". Polymers: Chemistry and Physics of Modern Material (Third ed.). Florida: CRC Press. pp. 363–373. ISBN 978-0-8493-9813-1.
- Kim, K.J.; Tadokoro, S. (2007). Electroactive Polymers for Robotic Applications, Artificial Muscles and Sensors. London: Springer. ISBN 978-1-84628-371-0.
- Bar-Cohen, Yoseph (11 September 2009). "Electroactive polymers for refreshable Braille displays". SPIE.
- Richter, A.; Paschew, G. (2009). "Optoelectrothermic Control of Highly Integrated Polymer-Based MEMS Applied in an Artificial Skin". Advanced Materials. 21 (9): 979–983. doi:10.1002/adma.200802737.
- Richter, A.; Klatt, S.; Paschew, G.; Klenke, C. (2009). "Micropumps operated by swelling and shrinking of temperature-sensitive hydrogels". Lab on a Chip. 9: 613–618. doi:10.1039/B810256B.
- Richter, A.; Kuckling, D.; Howitz, S.; Gehring, T; Arndt, K.-F. (2003). "Electronically controllable microvalves based on smart hydrogels: magnitudes and potential applications". Journal of Microelectromechanical Systems. 12 (5): 748–753. doi:10.1109/JMEMS.2003.817898.
- Yu, C., Mutlu, S., Selvaganapathy, P. Mastrangelo, C.H., Svec, F., Fréchet, J.M.J. (2003). "Flow control valves for analytical microfluidic chips without mechanical parts based on thermally responsive monolithic polymers". Analytical Chemistry. 75 (8): 1958–1961. doi:10.1021/ac026455j.
- "Hydrogel Micro Valves". GeSiM mbH. 2009.
- Richter, A.; Paschew, G.; Klatt, S.; Lienig, J.; Arndt, K.-F.; Adler, H.-J. (2008). "Review on Hydrogel-based pH Sensors and Microsensors". Sensors. 8 (1): 561–581. doi:10.3390/s8010561.
- Richter, A.; Türke, A.; Pich, A. (2007). "Controlled Double-Sensitivity of Microgels Applied to Electronically Adjustable Chemostats". Advanced Materials. 19 (8): 1109–1112. doi:10.1002/adma.200601989.
- Greiner, R., Allerdißen, M., Voigt, A., Richter A. (2012). "Fluidic microchemomechanical integrated circuits processing chemical information". Lab on a Chip. 12 (23): 5034–5044. doi:10.1039/C2LC40617A.
- "Electroactive Polymer Pumps". Discover technologies Inc. 7 June 2009.
- "Adaptive Membrane Optics". Discover technologies Inc. 7 June 2009.
- http://eap.jpl.nasa.gov/ NASA WorldWide Electroactive Polymer Actuators Webhub